Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(1): 100672, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563834

RESUMO

Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a âˆ¼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.


Assuntos
Ascomicetos , Simbiose , Simbiose/genética , Endófitos/genética , Árvores/genética , Ascomicetos/genética , Plantas/genética , Cromossomos
2.
Heliyon ; 9(11): e21375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027771

RESUMO

In this study, the whole mitochondrial genome (mitogenome) of Parasa sinica was sequenced. It contains 15,306 base pairs (bp), 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and one non-coding regulatory area (CR), all of which are shared by other lepidopterans. It follows the same gene order as ordinary lepidopterans. Further, out of these 37 genes, 23 are present on the heavy strand whereas the remaining 14 are located on the light strand. The A + T composition of the mitogenome is relatively high. Although P. sinica has a negative AT-skew and GC-skew, the GC-skew value is significantly lower than the AT-skew value. All PCGs, with the exception of CO1, carry the same start codon (ATN). All tRNAs exhibit the usual cloverleaf secondary structure. We identified the conserved motif "ATAGA + poly-T″ found in other lepidopteran insects at the beginning of the CR. We collected the concatenated PCGs sequences in the mitochondrial genome of 15 species of Zygaenoidea, with the sequences of Geometridae as outgroups, including P. sinica, and constructed phylogenetic trees using Bayesian inference (BI) and maximum likelihood (ML) methods. The monolineage of each superfamily is usually well supported. Based on phylogenetic analysis, P. sinica is a member of family Limacodidae, strongly supporting the monophyly of the Zygaenoidea groups.

3.
Mol Biol Rep ; 50(12): 10301-10313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971570

RESUMO

BACKGROUND: Brachyura crab is the largest branch of Decapoda crustacean. Phylogenetic relationships within Brachyura remain controversial to be investigated. The mitochondrial genome (mitogenome) is an important molecular marker for studying the phylogenetic relationships of Brachyura. METHODS AND RESULTS: To understand the phylogeny of Brachyura, the three complete mitogenomes from Charybdis annulata, Leptodius exaratus, and Spider crab were sequenced and annotated. Their full length was 15,747, 15,716, and 16,608 bp long, respectively. The first two crabs both contained 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. However, Spider crab contained 13 PCGs, two rRNA genes, 25 tRNA genes and a control region. The mitogenomes of each of the three crabs exhibited high AT content (67.8%, 69.1%, and 70.8%), with negative AT skews (-0.014, - 0.028, and - 0.017) and GC skews (-0.269, - 0.286, and - 0.341). The gene order of C. annulata was identical to the ancestor of Brachyura. Compared with the ancestor of Brachyura, L. exaratus exhibited the gene rearrangements of Val (V)-rrnS-control region, and Spider crab had the four copies of Lys (K). Phylogenetic analyses indicated that C. annulata belonged to Portunidae family, Portunoidea superfamilies, L. exaratus belonged to Xanthidae family, Xanthoidea superfamilies, and Spider crab belonged to Mithracidae family, Majoidea superfamilies. Phylogenetic analyses showed that the two species (Somanniathelphusa boyangensis and Huananpotamon lichuanense) belonging to the Potamoidea were sister groups to the Thoracotremata, thus supporting the conclusion that Heterotremata is polyphyletic. CONCLUSION: The results of this study enriched the crab mitogenome database and enabled us to better understand the phylogenetic relationships of Brachyura.


Assuntos
Braquiúros , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Braquiúros/genética , Rearranjo Gênico/genética , RNA de Transferência/genética
4.
Genetica ; 151(6): 339-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831421

RESUMO

The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Crustáceos/genética , Crustáceos/metabolismo
5.
Front Plant Sci ; 14: 1226720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719211

RESUMO

Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.

6.
Mol Biol Rep ; 50(5): 4165-4173, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894769

RESUMO

BACKGROUND: As the dominant species of Stomatopoda, Oratosquilla oratoria has not been fully cultivated artificially, and the fishery production mainly depends on marine fishing. Due to the lack of stomatopod genome, the development of molecular breeding of mantis shrimps still lags behind. METHODS AND RESULTS: A survey analysis was performed to obtain the genome size, GC content and heterozygosity ratio in order to provide a fundation for subsequent whole-genome sequencing. The results showed that the estimated genome size of the O. oratoria was about 2.56 G, and the heterozygosity ratio was 1.81%, indicating that it is a complex genome. Then the sequencing data was preliminarily assembled with k-mer = 51 by SOAPdenovo software to obtain a genome size of 3.01G and GC content of 40.37%. According to ReapeatMasker and RepeatModerler analysis, the percentage of repeats in O. oratoria was 45.23% in the total genome, similar to 44% in Survey analysis. The MISA tool was used to analyze the simple sequence repeat (SSR) characteristics of genome sequences including Oratosquilla oratoria, Macrobrachium nipponense, Fenneropenaeus chinensis, Eriocheir japonica sinensis, Scylla paramamosain and Paralithodes platypus. All crustacean genomes showed similar SSRs characteristics, with the highest proportion of di-nucleotide repeat sequences. And AC/GT and AGG/CCT repeats were the main types of di-nucleotide and tri-nucleotide repeats in O. oratoria. CONCLUSION: This study provided a reference for the genome assembly and annotation of the O. oratoria, and also provided a theoretical basis for the development of molecular markers of O. oratoria.


Assuntos
Crustáceos , Nucleotídeos , Animais , Crustáceos/genética , Sequência de Bases , Repetições de Microssatélites/genética , Genoma de Planta
7.
Animals (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978586

RESUMO

To resolve and reconstruct phylogenetic relationships within Pyraloidea based on molecular data, the mitochondrial genome (mitogenome) was widely applied to understand phylogenetic relations at different taxonomic levels. In this research, a complete mitogenome of Cydalima perspectalis was recorded, and the phylogenetic position of C. perspectalis was inferred based on the sequence in combination with other available sequence data. According to the research, the circular mitochondrial genome is 15,180 bp in length. It contains 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), 13 typical protein-coding genes (PCGs), and a non-coding control region. The arrangement of a gene of the C. perspectalis mitogenome is not the same as the putative ancestral arthropod mitogenome. All of the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is undertaken by CGA. Five genes have incomplete stop codons that contain only 'T'. All tRNA genes display a typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN). The control region contained an 'ATAGG(A)'-like motif followed by a poly-T stretch. Based on the mitochondrial data, phylogenetic analysis within Pyraloidea was carried out using Bayesian inference (BI) and maximum likelihood (ML) analyses. Phylogenetic analysis showed that C. perspectalis is more closely related to Pygospila tyres within Spilomelinae than those of Crambidae and Pyraloidea.

8.
Front Immunol ; 13: 906294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757717

RESUMO

Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.


Assuntos
Insetos , Integrinas , Animais , Fagocitose , Transdução de Sinais
9.
Front Immunol ; 13: 874605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619707

RESUMO

Emerging evidence reveals that the stimulator of the interferon genes (STING) signaling pathway in insects and other animal cells helps them to sense and effectively respond to infection caused by numerous types of microbial pathogens. Recent studies have shown that genomic material from microbial pathogens induces the STING signaling pathway for the production of immune factors to attenuate infection. In contrast, microbial pathogens are equipped with various factors that assist them in evading the STING signaling cascade. Here we discuss the STING signaling pathway different animal groups compared to human and then focus on its crucial biological roles and application in the microbial infection of insects. In addition, we examine the negative and positive modulators of the STING signaling cascade. Finally, we describe the microbial pathogen strategies to evade this signaling cascade for successful invasion.


Assuntos
Imunidade Inata , Proteínas de Membrana , Animais , Insetos/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais/fisiologia
10.
J Environ Manage ; 313: 114986, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390660

RESUMO

With the wide use of copper nanoparticles (CuNPs) in various industrial and commercial applications, they inevitably enter the aquatic environment. However, their behavior in the aquatic environment and potential toxicity to aquatic organisms remain little known. In this study, we investigated the behavior of CuNPs in freshwater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4), used as a positive control for copper ions toxicity, in red swamp crayfish (Procambarus clarkii). The results showed that CuNPs released copper ions into freshwater and aggregated rapidly in freshwater, and their release of copper ions and aggregation slowed down at a higher concentration of CuNPs. The calculated 72-h LC50 values for crayfish were 1.18 and 0.54 mg/L for CuNPs and CuSO4, respectively. Cu accumulation in the gill and hepatopancreas from CuSO4 treatments was significantly higher than that from CuNPs, and the highest Cu bioaccumulation level in crayfish was found in the gill, followed by hepatopancreas and muscle with the exposure of copper. The activities of the antioxidative enzymes in the crayfish significantly decreased after exposure to CuNPs for 48 h, compared to the control (without CuNPs or CuSO4). Histological examination revealed that there was no significant alteration of hepatopancreas in the crayfish exposed to CuNPs. Meanwhile, the growth of crayfish was not significantly inhibited by CuNPs. These results suggested that CuNPs exposure can induce oxidative stress in the crayfish, gill is the main tissue for their accumulation, and their toxicity is mainly caused by the released copper ions.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Astacoidea , Cobre/toxicidade , Íons , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
11.
Front Immunol ; 13: 1039956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703962

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is a freshwater fish with high economic value in eastern China. Nevertheless, pathogens causing bacterial diseases in P. fulvidraco have brought about huge economic loss and high mortality in artificial aquaculture. For disease control, it is critical to further understand the immune system of yellow catfish and immune-related genes with which they respond to pathogenic infections. In this study, high-throughput sequencing methods were used to analyze the transcriptomic spectrum of the head kidney from P. fulvidraco challenged by Vibrio cholera. A total of 45,544 unique transcript fragments (unigenes) were acquired after assembly and annotation, with an average length of 1,373 bp. Additionally, 674 differentially expressed genes (DEGs) were identified after stimulation with V. cholerae, 353 and 321 genes were identified as remarkably up- or downregulated, respectively. To further study the immune-related DEGs, we performed KEGG enrichment and GO enrichment. The results showed gene regulation of response to stimulus, immune response, immune system progress, response to external stimuli and cellular response to stimuli. Analysis of KEGG enrichment is important to identify chief immune related pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results indicated 10 immune response genes that were found to be upregulated compared to a control group after 6 h of V. cholerae challenging. In summary, the results of our study are helpful to determine the defense mechanisms and immune system responses of yellow catfish in reaction to bacterial challenges.


Assuntos
Peixes-Gato , Proteínas de Peixes , Animais , Rim Cefálico/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
12.
Anim Reprod Sci ; 234: 106865, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34614449

RESUMO

There has been a recent emphasis on production of large-sized Eriocheir sinensis broodstock. In China, aquaculturists generally prefer wild-caught (WC) crabs from the Yangtze River as broodstock because offspring performance is superior to that of pond-reared (PR) broodstock. Currently, however, there is a ban on fishing in the Yangtze River, and effects on E. sinensis breeding have not been ascertained. There was comparison in the present study of reproductive performance and semen characteristics of male broodstock of PR and WC groups. After copulation, sperm quantity in the vas deferens of crabs in specimens of both groups was large, although there was a consistent decrease in vaso-somatic index. Although sperm density of PR crabs was less, that of WC specimens remained relatively constant. Specimens of neither group, however, had changes in the hepatopancreas index or condition factor, and sperm survival was close to 100%. Although the acrosome reaction was detected in response to cold-temperature induction, there were differences in extent of reaction to cold temperatures. Importantly, in as many as 98% of sperm from female spermathecae, the reaction was completed, which was considerably greater than 15% for sperm of males post-mating. It is concluded there was no difference between PR and WC crabs with respect to reproductive performance or semen characteristics, and, notably, sperm from PR crabs were of sufficient quality for use in E. sinensis aquaculture enterprises. Accordingly, it is predicted the Yangtze River fishing ban would only have a limited effect on supply of male E. sinensis broodstock.


Assuntos
Criação de Animais Domésticos , Braquiúros/fisiologia , Animais , Animais Selvagens , Tamanho Corporal , Masculino , Reprodução/fisiologia , Sêmen , Análise do Sêmen
13.
Ecotoxicol Environ Saf ; 227: 112911, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673411

RESUMO

Chromium (Cr) as a chromate anion has a strong redox capacity that seriously threatens the ecological environment and human health. Cr can contaminate water and impart toxicity to aquatic species. Procambarus clarkii is an important food source that once represented a large proportion of the aquaculture industry due to its rapid reproduction and high economic value. However, there have been reports on the death of P. clarkii due to heavy metal pollution. The underlying mechanism regarding heavy metal toxicity was studied in this paper. The transcriptome data of hemocytes extracted from P. clarkii injected with Cr were analyzed by high-throughput sequencing and compared to the control group. In total, 48,128,748 clean reads were obtained in the treatment group and 56,480,556 clean reads were obtained in the control group. The reads were assembled using Trinity and the identified unigenes were then annotated. Then, 421 differentially-expressed genes (DEGs) were found, 170 of which were upregulated and 251 downregulated. Many of these genes were found to be related to glutathione metabolism and transportation. The glutathione metabolic pathway of P. clarkii was thus activated by Cr exposure to detoxify and maintain body function. Validation of DEGs with quantitative real-time PCR confirms the changes in gene expression. Thus, this study provides data supporting a glutathione-focused response of P. clarkii to exposure to heavy metals.


Assuntos
Astacoidea , Clarkia , Animais , Antioxidantes , Astacoidea/genética , Cromo/toxicidade , Mecanismos de Defesa , Perfilação da Expressão Gênica , Humanos , Transcriptoma
14.
Fish Shellfish Immunol ; 119: 280-288, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34571158

RESUMO

As an important economic species in China, aquaculture of the crayfish Procambarus clarkii has suffered huge losses due to infection by pathogenic bacteria, mainly by Aeromonas hydrophila, which leads to high mortality and huge economic loss. To better understand the immune response of crayfish against bacterial infection, we compared and analyzed transcriptome data of hepatopancreatic tissue from P. clarkii that were either challenged with A. hydrophila or treated with PBS. After assembly and annotation of the data, 32,041 unigenes with an average length of 1512 base pairs were identified. Compared to control group, Differential gene expression (DEG) analysis revealed 608 DEGs were obtained, of which 274 unigenes were upregulated and 334 were downregulated in the A. hydrophila group. Furthermore, the expression levels of eight selected immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-seq results. This study not only provides effective data support for immune defense strategies of P. clarkii in response to bacterial infections, but also provides new information about the P. clarkii immune system and defense mechanisms, and a valuable basis for further studies to elucidate the molecular immune mechanisms of this species.


Assuntos
Aeromonas hydrophila , Astacoidea , Animais , Astacoidea/genética , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Transcriptoma
15.
Int J Biol Macromol ; 183: 340-345, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33932411

RESUMO

Yellowhead catfish (Tachysurus fulvidraco) is an important aquaculture fish species in China with a high market value. Infectious diseases pose serious threats in farmed fish species, and although vaccines can prevent certain infections, they rely on potent adjuvants. In this study, we analyzed the transcriptomic profiles of spleens from poly (I:C)-treated T. fulvidraco. We obtained 46,362,922 reads corresponding to 490,926 transcripts and 318,059 genes. Gene annotation using different databases and subsequent differential gene expression analyses led to the identification of 5587 differentially expressed genes (DEGs), of which 2473 were up-regulated and 3114 were down-regulated in poly (I:C)-treated fish. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs revealed the significant dysregulation of immune- and cancer-related genes in the spleens of poly (I:C)-treated fish. Notably, several components of JAK-STAT, MAPK, and p53 signaling pathways were significantly dysregulated in response to poly (I:C) treatment. Quantitative real-time PCR (qRT-PCR) analysis of 11 randomly selected immune response genes confirmed the reliability of our findings. In conclusion, our findings provide novel insight into the immune responses of T. fulvidraco and suggest that poly (I:C) may represent a promising adjuvant of fish vaccines.


Assuntos
Poli I-C/química , Animais , Peixes-Gato , Perfilação da Expressão Gênica , Transcriptoma/genética
16.
Genes Genomics ; 43(5): 479-490, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689153

RESUMO

BACKGROUND: Olfaction plays a central role in mating, spawning, obtaining food and escaping predators, which is essential for survival and reproduction of animals. The nature of the olfactory perception in crabs, which is a major group of crustaceans, has remained elusive. OBJECTIVE: This project aims to explore the molecular mechanism of olfaction in crabs and further improve our understanding of olfactory perception in crustaceans. METHODS: The olfactory receptors and ingestion-related gene expression in Eriocheir japonica sinensis were studied by transcriptomic techniques. The de novo assembly, annotation and functional evaluation were performed with bioinformatics tools. RESULTS: A series of chemosensory receptors associated with olfaction were identified including 33 EsIRs, 24 EsIGluRs, 58 EsVIGluRs, 1 EsOR and 1 EsGC-D. We found IRs were key odorant receptors demonstrating a specific species evolutionary trend in crustaceans. Furthermore, we identified ORs in E. j. sinensis and Litopenaeus vannamei. The incomplete EsOR and LvOR1 structures implied that ORs exist in crustaceans, and may have been degenerated or even lost in the olfactory evolutionary process. In addition, comparative transcriptome analysises demonstrated two possible olfactory transduction pathways of E. j. sinensis: the cGMP-mediated olfactory pathway related to vegetable odor molecules and the cAMP-mediated olfactory pathway related to meat odor molecules. The above results were consistent with its omnivorous ingestion of E. j. sinensis. CONCLUSIONS: Our study revealed the unique olfactory molecular mechanism of omnivorous crabs and provided valuable information for further functional research on the chemoreception mechanisms in crustaceans.


Assuntos
Braquiúros/genética , Receptores Odorantes/genética , Animais , Braquiúros/metabolismo , Braquiúros/fisiologia , Ingestão de Alimentos , Evolução Molecular , Receptores Odorantes/metabolismo , Transcriptoma
17.
Ecotoxicology ; 30(4): 632-642, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33728520

RESUMO

Copper (Cu2+), which represents a major physiological challenge for crab culture, is ubiquitous in the aquatic culture environment, and gills are the first organs that come into direct contact with the environment. However, the molecular basis of the response of crabs to Cu2+ stress remains unclear. Here, we conducted a transcriptome and differential expression analysis on the gills from Chinese mitten crab unexposed and exposed to Cu2+ for 24 h. The comparative transcriptome analysis identified 2486 differentially expressed genes (DEGs). GO functional analysis and KEGG pathway analysis revealed some DEGs, which were mostly related to immunity, metabolism, osmotic regulation, Cu2+ homeostasis regulation, antioxidant activity, and detoxification process. Some pathways related to humoral and cellular immunity, such as phagosome, peroxisome, lysosome, mTOR signaling pathway, PI3K-Akt signaling pathway, Toll-like receptor signaling pathway, and T cell receptor signaling pathway were enhanced under Cu2+ stress. In addition, Cu2+ stress altered the expression patterns of key phagocytosis and apoptosis genes (lectin, cathepsin L, Rab7, and HSP70), confirming that Cu2+ can induce oxidative stress and eventually even apoptosis. Histological analysis revealed that the copper can induce damage at the cellular level. This comparative transcriptome analysis provides valuable molecular information to aid future study of the immune mechanism of Chinese mitten crab in response to Cu2+ stress and provides a foundation for further understanding of the effects of metal toxicity.


Assuntos
Braquiúros , Cobre , Animais , Braquiúros/genética , China , Cobre/toxicidade , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases
18.
Genomics ; 113(3): 946-954, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503506

RESUMO

Sesarmops sinensis is a dominant omnivorous crab species, which plays an important ecological function in salt marsh ecosystems. To better understand its immune system and immune related genes under pathogen infection, the transcriptome was analyzed by comparing the data of S. sinensis hepatopancreas stimulated by PBS and PGN. A set of assembly and annotation identified 39,039 unigenes with an average length of 1105 bp, obtaining 1300 differentially expressed genes (DEGs) in all, which included 466 remarkably up-regulated unigenes and 834 remarkably down-regulated unigenes. In addition, based on mensurable real time-polymerase chain reaction and high-throughput sequencing, several immune responsive genes were found to be markedly up-regulated under PGN stimulation. In conclusion, in addition to enriching the existing transcriptome data of S. sinensis, this study also clarified the immune response of S. sinensis to PGN stimulation, which will help us to further understand the crustacean's immune system.


Assuntos
Braquiúros , Hepatopâncreas , Animais , Braquiúros/genética , Ecossistema , Perfilação da Expressão Gênica , Peptidoglicano/genética , Transcriptoma
19.
Genomics ; 113(1 Pt 2): 1257-1264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949684

RESUMO

This study isolated CFI gene from Pelteobagrus fulvidraco and named it PfCFI. The cDNA of PfCFI is 2374 bp long, including a 52 bp 5' untranslated sequence, a 222 bp 3' untranslated sequence, and an open reading frame (ORF) of 2100 bp encoding polypeptide consisting of 699 amino acids. Phylogenetic analysis revealed that the PfCFI was closely related to CFI of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis indicate that there is the PfCFI gene which expressed in all the rest of tested tissues in varied levels, and mainly distributed in liver and least in heart. The reseachers induce the expressions level of PfCFI gene in liver, spleen, head kidney and blood at different points in time after challenged with lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C), respectively. Together these results suggested that CFI gene plays an important role in resistance to pathogens in yellow catfish immunity.


Assuntos
Peixes-Gato/genética , Fator I do Complemento/genética , Proteínas de Peixes/genética , Imunidade Inata , Animais , Peixes-Gato/imunologia , Fator I do Complemento/metabolismo , Proteínas de Peixes/metabolismo , Rim/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo
20.
Mol Ecol Resour ; 21(2): 511-525, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33010101

RESUMO

The blue king crab, Paralithodes platypus, which belongs to the family Lithodidae, is a commercially and ecologically important species. However, a high-quality reference genome for the king crab has not yet been reported. Here, we assembled the first chromosome-level blue king crab genome, which contains 104 chromosomes and an N50 length of 51.15 Mb. Furthermore, we determined that the large genome size can be attributed to the insertion of long interspersed nuclear elements and long tandem repeats. Genome assembly assessment showed that 96.54% of the assembled transcripts could be aligned to the assembled genome. Phylogenetic analysis showed the blue king crab to have a close relationship with the Eubrachyura crabs, from which it diverged 272.5 million years ago. Population history analyses indicated that the effective population of the blue king crab declined sharply and then gradually increased from the Cretaceous and Neogene periods, respectively. Furthermore, gene families related to developmental pathways, steroid and thyroid hormone synthesis, and inflammatory regulation were expanded in the genome, suggesting that these genes contributed substantially to the environmental adaptation and unique body plan evolution of the blue king crab. The high-quality reference genome reported here provides a solid molecular basis for further study of the blue king crab's development and environmental adaptation.


Assuntos
Adaptação Biológica , Anomuros , Evolução Biológica , Animais , Anomuros/genética , Cromossomos , Genoma , Tamanho do Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA